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Abstract—We present the application of different nonlinear image deformation models to the task of image recognition. The deformation

models are especially suited for local changes as they often occur in the presence of image object variability. We show that, among the

discussed models, there is one approach that combines simplicity of implementation, low-computational complexity, and highly

competitive performance across various real-world image recognition tasks. We show experimentally that the model performs very well

for four different handwritten digit recognition tasks and for the classification of medical images, thus showing high generalization

capacity. In particular, an error rate of 0.54 percent on the MNIST benchmark is achieved, as well as the lowest reported error rate,

specifically 12.6 percent, in the 2005 international ImageCLEF evaluation of medical image categorization.

Index Terms—Image matching, image alignment, character recognition, medical image categorization.

Ç

1 INTRODUCTION

IMAGE matching is an important step in many image
recognition tasks. Especially in the presence of high

image variability, classification by flexible matching of an
image to given references is one of the most promising
approaches to achieve low error rates. In this paper, we
discuss and compare several models for image matching in
the context of recognition and show that they lead to
excellent results across different tasks.

Numerous deformation models of different complexity
have been discussed in the literature, but they are usually
not directly compared. Models of second, first, and zeroth
order exist. However, a large number of problems have not
yet been addressed, specifically:

. What is the trade-off between algorithmic complex-
ity and classification performance?

. What is the effect of pixel context in matching
algorithms?

. How important are true 2D approaches?

Here, we provide a consistent performance comparison
on real-world tasks and also compare the computational
complexities. We denote by order 2 those models for which
the displacement of a pixel depends on the displacement of
its neighboring pixels in both directions of the two-
dimensional image grid. Analogously, we say a model is
of order 1 if this dependency is reduced to neighbors along
one dimension and of order 0 if no such dependency exists.
Starting from a true two-dimensional model, we proceed to
discuss pseudo-two-dimensional models (of order one) and

zero-order deformation models. In the past, it was unclear
to which extent complex models with many constraints on
the matchings are necessary for good recognition results. It
is to be expected and will be confirmed by the experiments
that—for the tasks investigated—complex models are not
necessary; a simple model that incorporates a suitable
representation of the local image context is sufficient.

The main objectives of this paper are:

. To show that a conceptually simple nonlinear model
of image variability leads to consistently high
performance in several real-world image recognition
tasks and might therefore be considered as a baseline
method for various recognition tasks.

. To show that the straightforward paradigm of appear-
ance-based image classification with appropriate
models of variability leads to very competitive results
in the domain of handwritten character recognition.

. To directly compare different nonlinear models and
to experimentally confirm that the use of less
restrictive two-dimensional constraints in image
matching can be compensated by using local image
context at the pixel level.

In this paper, we call the process of assigning one out of
K class labels to an image recognition or classification. A
deformation of an image is the application of a two-dimen-
sional transformation of the image plane, e.g., a small rotation
or a shift of a small part of the image. The matching of two
images consists of finding the optimal deformation from a set
of allowed deformations in the sense that it results in the
smallest distance between the deformed reference image and
the observed test image. The context of a pixel refers to the
values of pixels in a neighborhood of that pixel and quantities
derived from these, e.g., gradient values.

2 RELATED WORK ON IMAGE MATCHING

There is a large amount of literature dealing with the
application of matching to computer vision and pattern
recognition tasks. In this paper, we focus on the local
deformation of images and, thus, do not discuss the global
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alignment of images, which, with respect to affine transfor-
mations, for example, is a problem that is complementary to
the one discussed here. Note that matching is often done after
segmentation orcontourextraction, whichis inherently a two-
stage procedure. We propose using the appearance-based
approach in which no intermediate segmentation errors can
occur. We briefly discuss the most relevant related work here.

Uchida and Sakoe [52] present a dynamic programming
algorithm for the true two-dimensional image deformation
model which takes into account continuity and monotonicity
constraints. The exponential computational complexity is
reduced by finding possibly suboptimal solutions using
beam search. In [53], Uchida and Sakoe investigate the use of
class-specific deformations for handwritten character recog-
nition using three different elastic matching techniques.
These eigen-deformations improve the recognition results
considerably, but no pixel context is taken into account.
Recently, the authors presented a thorough comparison and
classification of different warping algorithms in [54].

Wiskott et al. [57] represent face images by elastic graphs
which have node labels representing the local texture
information as computed by a set of Gabor filters. These
filters represent local information comparable to the Sobel
values used in this work, but a richer descriptor on a sparse
grid is used.

Belongie et al. [2] describe a method for image matching
that is based on representations of the local image context
called “shape contexts” which are extracted at edge points.
An assignment between these points is determined using
the Hungarian algorithm and the image is matched using
thin-plate splines, which is iterated until convergence. This
method also uses a richer descriptor than the method
presented here and relies on edge detection first; it is also
computationally much more complex.

Levin and Pieraccini [34] extend the one-dimensional
dynamic time warping algorithm to two dimensions and
note that the algorithm has exponential complexity. They
then propose restricting the problem by assuming inde-
pendence between vertical and horizontal displacement
and thus arrive at a model that is essentially a pseudo-two-
dimensional (P2D) model.

Kuo and Agazzi [30] also describe the use of pseudo-two-
dimensional hidden Markov models (HMMs) in the domain
of document processing. They use such a model to detect the
occurrences of keywords in images of documents that are
subject to noise.

The use of iterative matching using coupled one-dimen-
sional HMMs is proposed for two-dimensional matching by
Perronnin et al. [42], but no pixel context is considered.

Image registration is a concept that is often applied in
medical applications and is connected to the methods
discussed here by the inherent optimization or matching
process. A prominent example of a registration algorithm is
the one by Viola and Wells [56], but the literature with respect
to this subject is vast. In their review of image warping
methods, Glasbey and Mardia [15] give a summary of various
methods for image registration or warping and state that the
fundamental trade-off is between the smoothness of the
image transform and the closeness of the achieved match. The
major difference between image registration and matching
for recognition is that, in registration, it is known that the two
images should match. The trade-off in image registration is
between a good match and high distortion of the image. In

matching for image recognition, on the other hand, we do not
know in advance if the two images should result in a good
match. Thus, we are faced with a different trade-off here: We
are interested in a matching that allows us to compensate for
geometric intraclass variation but at the same time retains
interclass variation even under the optimal matching allowed
within the model. In terms of distances, we have to balance
wanted small distances for images of the same class (which
can be achieved by adding more flexibility to the matching
process) with the unwanted result of generally small
distances even for images of different classes (which requires
limiting the flexibility of the matching process).

The model that we present as the “image distortion model”
was presented earlier in several other works under different
names: For example, it is presented by Burr in [6]; in [41], Mori
et al. refer to it as “shift similarity;” Umeda presents it as
“locally maximized correlation” in [55]; and, recently, it was
referenced as “local perturbation” by Uchida and Sakoe in
[54]. In contrast to these references, we emphasize the use of
local context within this model, which greatly improves
recognition results.

In the past, matching for handwritten digit recognition has
also been approached as a problem of matching a one-
dimensional structure in two-dimensional images (the
production of handwritten symbols by drawing with a pen
implies that there is an underlying one-dimensional struc-
ture), e.g., [5], [20]. However, in the current literature, it seems
that, for offline recognition, two-dimensional models per-
form considerably better, although outlines are still used
directly [7] and indirectly [2].

Summarizing, these previous methods can roughly be
categorized by 1) the representation of the underlying
image parts being matched, 2) the allowed deformations,
and 3) the classification step.

1. Representation of the underlying image parts. Local
texture descriptors (roughly comparable to the Sobel
filters used here) are used in [57]. Belongie et al. [2] use
spatial histograms over edge points to represent
shapes. Some works directly use the gray values of
pixels for the matching [43], [52], [54], [42]. For OCR
applications, some methods use outlines [7], [2] or rely
on an underlying one-dimensional structure of the
patterns [5], [20].

2. Allowed deformations. The bunchgraph matching
technique allows for rotation, scale, translation, and
small local displacements [57]. In the shape context
method, the allowed transformations are described
by thin-plate-spline transformations. The one-di-
mensional matching [6], [41], [55], [54] that we call
“image distortion model” allows for nonlinear local
displacements. The methods described in [34], [30]
allow for the same deformations as the P2DHMM
model presented here, whereas the method pre-
sented in [42] iteratively improves these deforma-
tions by alternating horizontal and vertical direction.

3. Classification step. The methods presented in [2], [43],
[52], [54] use the nearest neighbor or nearest prototype
classification rule for the classification of images and
the result of the matching process is used to obtain an
appropriate distance function. Most of the experi-
ments performed in this work similarly use the
nearest neighbor decision rule as this allows us to
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best investigate the effect of the matching techniques.
Additionally, we use the nearest prototype decision
rule in a key experiment, which can strongly reduce
the computation time in classification.

In summary, we can conclude that a large variety of
matching models for images have been discussed in the
literature. However, in this paper, we address several
questions, outlined in Section 1, that have so far remained
unanswered. These concern the direct performance com-
parison of the models in image recognition tasks and their
generalization ability, the necessity of complex matching
restrictions that lead to computationally complex algo-
rithms, and the use of image context at the pixel level.

3 FRAMEWORK FOR RECOGNITION USING

NONLINEAR MATCHING

For our discussion of the nonlinear deformation models and

the experiments we performed, we use the following

framework: We denote the test image (or observation) by

A ¼ faijg, where the pixel positions are indexed by

ði; jÞ; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J , and ðx; yÞ denotes the pixel

positions within the reference image (or model) B ¼
fbxyg; x ¼ 1; . . . ; X; y ¼ 1; . . . ; Y . At each image position,

we observe a vector of values aij, bxy 2 IRU , aij ¼ ða1
ij; . . . ; aUijÞ,

bxy ¼ ðb1
xy; . . . ; bUxyÞ that can represent gray values ðU ¼ 1Þ,

color values ðU ¼ 3Þ, the vertical and horizontal image

gradient ðU ¼ 2Þ, or a larger pixel context (e.g., U ¼ 18 for

3� 3 pixel contexts of the image gradients).
We consider image deformation mappings that map

pixel positions of the test image onto pixel positions of the

reference image and must fulfill certain constraints

xIJ11 ; y
IJ
11

� �
:

ði; jÞ7!ðxij; yijÞ; i ¼ 1; . . . ; I; j ¼ 1; . . . ; J; xIJ11 ; y
IJ
11

� �
2 M:

ð1Þ

The setM of possible image deformation mappings defines

the model used. Each model will be discussed in more

detail in the following sections. A brief informal summary

of the models is given along with their formal definitions in

Table 1.
The distortion models with their permitted deformation

mappings differ in the way they treat the interdependence of

local pixel displacements. When a pixel ði; jÞ is mapped onto a

reference pixel ðxij; yijÞ, we can observe the difference of this

mapping to the mapping of its neighbors ði� 1; jÞ and ði; j�
1Þ in the original image. For example, to ensure a continuous

and monotonic mapping, we do not allow the difference in

displacement of neighboring pixels to be negative (no

crossings) nor greater than two pixels. We also restrict the

maximum horizontal displacement difference of vertically

neighboring pixels to at most one pixel. This restriction would

also apply, respectively, to neighboring pixels. This approach
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leads to the two-dimensional warping model, while the other
models result if some of these restrictions are relaxed.

From the constraints presented in Table 1, we can observe
that there are relative and absolute constraints: Relative
constraints concern the relation between mappings of
neighboring pixels, e.g., xiþ1;j � xij, while absolute con-
straints only look at the original position of the pixel in the
image, e.g., possible values for xij only depend on i and j. The
IDM only includes absolute constraints, which allows
efficient minimization. Often, an absolute constraint like the
one for the IDM is additionally imposed for the other models,
e.g., the warp range is limited for the P2DHMM by adding to
the constraints of the P2DHMM the constraints of the IDM.
Note that these constants depend on the image and object size
and resolution.

The constraints presented here are all hard constraints, i.e.,
it is either possible or not possible to have a certain mapping
under a specific model. Although we will not discuss this
possibility further, we could also use cost functions instead of
these hard constraints, such that certain mappings are
permitted, but only at a higher cost, where this cost is added
to the distance value. (The hard constraints are a special case
of the cost functions, where the cost takes only the values 0
and1.) Cost functions also allow us to additionally penalize
some permitted mappings. For example, xi;jþ1 � xij ¼ 0
could be assigned cost zero and xi;jþ1 � xij > 0 could involve
higher costs, thus penalizing mappings that deviate con-
siderably from the linear mapping. Some cost functions of this
type are easily integrated into the algorithms and do not
change the runtime significantly, while others may require
algorithmic changes. Cost functions of the first kind have
been evaluated in detail in informal experiments, but, in
exchange for the number of additional parameters that need
to be tuned, no significant improvements could be obtained.

Figs. 1 and 2 show sample images that result from a
matching using the different distortion models discussed in
this paper. We use face images in Fig. 1 because they allow a
very intuitive understanding of dissimilarity and images of

handwritten digits in Fig. 2 as they are used in the
experiments. In both figures, the first column shows the test
and reference images. The rest of the upper row shows the
transformed reference images, using the respective models,
that best match the test image. The lower row shows the
respective displacement grids generated to obtain the
transformed images. The two first rows show images of
“different classes,” while the other two rows show images of
the “same class.” The examples on the left were created using
only the image gray values. We observe that, for the same
class, the models with more restrictions produce inferior
matches to the models with less restrictive matching con-
straints. We are interested in discriminating between differ-
ent classes, therefore our goal is to have good matchings
(small distances between the test image and the transformed
reference image) for images of the same class, but matchings
with large distances for images of different classes. This is
obviously not achieved by the models with fewer restrictions,
e.g., the IDM, when applied using only the gray values. The
second four examples show the results for the case using local
context for matching as detailed below. Note that the
matchings for the same class remain very accurate, while
the matching for the different classes are visually not as good
as before. This is especially true for the models with fewer
constraints, such as the IDM. Note also that the displacement
grid is more homogeneous for the matchings of the same class.

Decision Rule. In this paper, the main emphasis lies on
the effect of the different distance functions resulting from
the various deformation models. We therefore choose a
simple decision rule for the recognition process that does
not introduce any new parameters that subsequently need
to be adjusted. Assuming a reference data set of images
Bk1; . . . ; BkNk

for classes k ¼ 1; . . . ; K, we use the nearest
neighbor decision rule, which is known to yield good
results in various applications:

A 7�!k̂ðAÞ ¼ arg min
k
f min
n¼1;...;Nk

dðA;BknÞg: ð2Þ

KEYSERS ET AL.: DEFORMATION MODELS FOR IMAGE RECOGNITION 1425

Fig. 1. Examples of nonlinear matching applied to face images (see text).



The distance function used within the decision rule has a

special structure, it results from a minimization over all

permitted deformation mappings for the model used

dðA;BÞ ¼ min
ðxIJ

11
;yIJ

11
Þ2M

d0ðA;BðxIJ
11
;yIJ

11
ÞÞ

n o
: ð3Þ

Here, the minimization process is of varying computational

complexity depending on the model used as discussed

below. Note that we use an asymmetric distance function

here because we want to find the reference that best explains

the observed image, similar to the use of HMMs in other

classification tasks. The simpler distance function d0 used

within the minimization is chosen to be the squared

euclidean distance over all vector components of all pixels

that are compared:

d0 A;BðxIJ
11
;yIJ

11
Þ

� �
¼
X
i;j

X
u

auij � buxijyij
� �2

¼
X
i;j

kaij � bxijyijk
2:

ð4Þ

To better analyze the minimizations for the different

models, we can rewrite the distance function by factoring

out the dependencies of ðxIJ11 ; y
IJ
11 Þ 2 M by letting each

choice at a pixel ði; jÞ depend only on choices made for

pixels before reaching this pixel

dðA;BÞ ¼ min
ðxIJ

11
;yIJ

11
Þ

X
i;j

fðA;B; xij; yij; xi;j�1
11 ; yi;j�1

11 Þ

fðA;B; xij; yij; xi;j�1
11 ; yi;j�1

11 Þ ¼

kaij � bxijyijk
2 if xi;j�1

11 ; yi;j�1
11 extensible by xij; yij inM

1 otherwise:

(

ð5Þ

Although this formulation may look more complicated

than necessary, we can now immediately analyze the

following cases:

2DW : dðA;BÞ
¼ min
ðxIJ

11
;yIJ

11
Þ

X
i;j

fðA;B; xij; yij; xi;j�1; yi;j�1; xi�1;j; yi�1;jÞ;

ð6Þ

P2DHMM : dðA;BÞ
¼ min
ðxIJ

11
;yIJ

11
Þ

X
i;j

fðA;B; xij; yij; xi;j�1; yi;j�1Þ; ð7Þ

IDM : dðA;BÞ ¼
X
i;j

min
ðxij;yijÞ

fðA;B; xij; yijÞ ð8Þ

(with the canonical predecessor for the limit cases, e.g., j ¼ 1).
We see that, for the zero-order IDM, f is independent of the
history and, therefore, the minimization and the summation
can be interchanged, leading to a computationally simple
minimization problem. For the first-order P2DHMM, the
dependence is restricted to immediate successors. This means
that the minimization can be done using dynamic program-
ming with recombination over only one variable and, thus, an
efficient algorithm exists. (The P2DHMDM case is similar but
requires more tedious notation.) Only for the second-order
2DW model does the dynamic programming algorithm need
to recombine over J previous variables and, therefore, the
algorithm is exponential in the image size; in fact, the problem
can be shown to be NP-complete [27].

Feature extraction. An analysis of matching results when
using only pixel gray values shows that often unwanted
deformations are observed that allow good matchings for
images of different classes. This behavior can be restricted by
including the local image context of each pixel in an
appropriate way, which is confirmed by experimental results:
In experiments on the USPS corpus only, a comparatively
small improvement from 5.6 percent (no matching) to
4.0 percent was possible when using the pixel values directly.
This error rate can be approximately halved when using pixel
context information.
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Fig. 2. Examples of nonlinear matching applied to USPS digit images (see text).



One straightforward way to include the local image
context is to use derivatives of the image values with respect
to the image coordinates as computed by the horizontal and
vertical Sobel filter. These values have the additional
advantage of invariance with respect to the absolute image
brightness. Experiments showed that best results are ob-
tained when using only gradient information and disregard-
ing the image brightness values completely [24].

The use of gradient information is a fairly standard
approach in many image processing andrecognition contexts.
It is, for example, also used by [36] (histograms of gradient
information around interest points) and by [2] (histograms of
contour point occurrence around selected contour points). In
this paper, we show how it can be used to achieve excellent
recognition results by counteracting the effect of using fewer
restrictions in the matching process for recognition.

Of course, when using the first derivative, it is natural to
ask if the second derivative could lead to similar improve-
ments. Unfortunately, the additional use of the second
derivative led to only small improvements in some of the
experiments performed and to degraded performance in
some other cases. Therefore, we chose not to use higher order
derivatives.

A second way to include the local image context is to use
local subimages that are extracted around the pixel
concerned, e.g., of size 3� 3 pixels. Naturally, the size of
the optimal context depends on the resolution of the objects
in the images. Thus, this size should be determined for each
task individually. For handwritten character recognition
with image sizes between 16� 16 and 28� 28 pixels, we
observed that a local context of 3� 3 pixels leads to the best
results, tested for the USPS data set. The performance
generalized well for the other digit recognition tasks and
medical images. In the experiments, the medical images
were scaled down to a common height of 32 pixels from
varying, much larger sizes using standard averaging. This
reduction was used to reduce the runtime and because we
observed that this size was a good comprise for the task of
recognition, containing enough detail to allow a clear
distinction of the classes, while reducing the extraneous
details that are counterproductive in classification.

The contexts can be extracted from the gray values in the
image, thus leading to a vector of dimension U ¼ 9. This
already leads to improvements in recognition. However, we
can combine the two methods and extract the contexts from
the gradient images, which changes the value of an image
pixel to a vector of dimension U ¼ 18. This combination
leads to consistently better results and was therefore
adopted in all experiments presented in the following.
Fig. 3 illustrates the procedure of context extraction.

4 SECOND-ORDER: TWO-DIMENSIONAL MODEL

We begin the discussion of the two-dimensional matching
algorithms with the true two-dimensional model. The two-
dimensional HMM or two-dimensional warping (2DW) is an
extension to two dimensions of the (0, 1, 2)-HMM that is
frequently used in applications such as speech recognition
and the recognition of continuous handwriting. The model
ensures monotonicity (no backward steps) and continuity
(no large jumps) of the displacement grid. Note that the term
HMM is used here for a distance model as is done in large
parts of the relevant literature, although no probabilistic view
is taken (no parameter estimation, no estimation of transition
probabilities). In contrast to the one-dimensional case, which
allows polynomial solutions, the minimization of this true
2D model is NP-complete [27]. Therefore, approximation
algorithms are used, for example, dynamic programming
with beam search [52] or simulated annealing. For a detailed
discussion of the model and the dynamic programming
algorithm that can be used for the minimization, we refer to
the works of Uchida and Sakoe [52], [54].

The 2DW model results from imposing the following
constraints on the image deformation mappings ðxIJ11 ; y

IJ
11 Þ

permittedwithinthematchingforrecognition(3) (seeTable1).
We first impose the border constraint that image borders
should be matched on image borders: x1j ¼ 1; xIj ¼ X;
yi1 ¼ 1; yiJ ¼ Y . This constraint can be most easily relaxed
by padding the images with background pixels. Second, we
require that horizontally adjacent pixels should not be
matched onto pixels that deviate from the relative position
in the original image bymore than one pixel. To do so, we need
two constraints, one in the horizontal direction, xiþ1;j �
xij 2 f0; 1; 2g, and one in the vertical direction, xi;jþ1 � xij 2
f�1; 0; 1g. The same constraints are imposed for vertically
adjacent pixels: yi;jþ1 � yij 2 f0; 1; 2g, yiþ1;j � yij 2 f�1; 0; 1g.

There are several possible algorithms to determine an
approximation of the best matching under the 2DW model,
as discussed above. In this section, we briefly describe the
algorithm based on dynamic programming, as introduced
by [52]. Theoretically, this algorithm allows us to obtain the
optimal solution, but only at runtimes exponential in the
minimum of the image widths. To obtain a solution in a
feasible amount of time, we use the concept of beam search.
More specifically, in each stage ði; jÞ (corresponding to the
pixel positions) of the algorithm, we define a threshold
value by increasing the score of the best hypothesis by a
fixed value, then we disregard all hypotheses with scores
higher than the threshold value. Furthermore, we limit the
maximum number of hypotheses to a fixed value (500 in the
experiments). Algorithm 1 gives an outline of the algorithm
used to calculate this distance. There, M0ði; jÞ denotes the
set of all possible submappings for the last J pixels up to
ði; jÞ in the order described above that can be extended to a
permitted mapping in M. The notation preðsÞ � M0ði; j�
1Þ denotes all possible predecessors of such a submapping s
that are compatible with s in the sense that they agree in
their mappings for all shared pixel positions and that the
union of their mappings can be extended to a permitted
mapping inM. Note that we do not elaborate on all special
cases here, e.g., for i ¼ 1 or j ¼ 1, the recursion obviously
must take a different form.

The size ofM0ði; jÞ is exponential in J , which makes the
algorithm difficult to apply without beam search, even for
only moderately large J .
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Fig. 3. Local context extraction, 3� 3 subimages of gradients.



Algorithm 1 2DW-distance; input: test image A,
reference image B;

for i ¼ 1 to I

for j ¼ 1 to J

for all separating submappings s 2 M0ði; jÞ
//(note: jM0ði; jÞj exponential in J)

Qði; j; sÞ ¼ kaij � bsði;jÞk2 þ min
s02preðsÞ

Qði; j� 1; s0Þ
output: min

s2M0ðI;JÞ
QðI; J; sÞ

Other possible strategies to determine an approximation
of the best matching include: simulated annealing, which is a
common strategy to find approximate solutions to hard
optimization problems, turbo-decoding, i.e., iterative match-
ing with relaxed horizontal and vertical constraints [42], and
piecewise linear matching [43].

5 FIRST-ORDER: PSEUDO-TWO-DIMENSIONAL

MODELS

The complexity of the true two-dimensional matching
algorithms—even when using approximations like beam
search or simulated annealing—is very high. To be able to
apply deformation models for real-world tasks, we must
therefore consider models of a lesser order.

Pseudo-two-dimensional hidden Markov model. To
proceed from two-dimensional models to models of lesser
order, we relax some of the constraints of the true two-
dimensional case. Usually, this is done by allowing the
columns of an image to be matched onto the reference image
independently, which leads to the so-called pseudo-two-
dimensional hidden Markov model (P2DHMM) [30]. The
P2DHMM is obtained from the 2DW model by neglecting
relative displacement in the vertical image direction between
pixels of neighboring image columns and mapping all pixels
from one column onto the same target column. We impose the
same border constraints as for the 2DW model and require
that a mapping of image columns fx̂1; . . . ; x̂Ig exists for which
x̂iþ1 � x̂i 2 f0; 1; 2g and each xij ¼ x̂i, i.e., the horizontal
displacement is the same for all pixels of one column. For the
vertical displacements, we keep the constraints yi;jþ1 � yij 2
f0; 1; 2g (see Table 1).

The assignment of complete columns onto other columns
has two consequences: First, only complete columns of the
reference image can be skipped in the matching. Second,
dependencies between the vertical displacements of the
pixels in neighboring columns are ignored. The first of these
limitations is avoided to some degree by allowing addi-
tional deviations from the column assignment as described
below. The second limitation cannot be overcome easily
without arriving at a second-order problem again.

The main direction of the model is usually chosen left-to-
right. This is the canonical form for western text, but is an
arbitrary decision for general objects or for isolated
characters. The algorithm can be applied similarly with
the main direction of the model being top-to-bottom.

Pseudo-two-dimensional hidden Markov distortion
model. To relax the constraint that complete columns of the
images must always be matched, we can allow additional
distortions from the columns that are matched by an
additional pixel within the P2DHMM model. These distor-
tions are modeled to be independent of each other and we call
the resultingmodel pseudo-two-dimensionalhiddenMarkov
distortion model (P2DHMDM) [24], [23]. This abbreviation is

rather lengthy but clearly shows the relationship to the
P2DHMM and also to the image distortion model (IDM) as
discussed below. Formally, we only need to relax the
constraint xij � x̂i ¼ 0 in the P2DHMM to xij � x̂i 2
f�1; 0; 1g (see Table 1). The mapping of one column of the
test image is determined by dynamic programming similar to
the case of the P2DHMM, only now a deviation from the target
column is permitted, which is at most one pixel for this
example and also for the experiments reported here. This
additional flexibility within the mapping of the columns leads
to a slightly higher computational complexity.

The algorithms for both the P2DHMM and the

P2DHMDM are given in Algorithm 2.

Algorithm 2 P2DHMM-distance; input: test image A,

reference image B;

for i ¼ 1 to I

for x ¼ 1 to X

for j ¼ 1 to J

for y ¼ 1 to Y

Qði; j; x; yÞ ¼ kaij � bxyk2

þ min
y02fy;y�1;y�2g

Qði; j� 1; x; y0Þ

Q0ði; jÞ ¼ Qði; x; J; Y Þ þ min
x02fx;x�1;x�2g

Q0ði� 1; x0Þ
output: Q0ðI;XÞ
for the P2DHMDM, replace “kaij � bxyk2”

with “ min
x02fx�1;x;xþ1g

kaij � bx0yk2”

6 ZERO-ORDER: THE IMAGE DISTORTION MODEL

If we further relax the constraints on the image mapping

functions and impose only absolute constraints, we arrive

at a zero-order model of image variability. Its advantage

is that the minimization process is computationally much

simpler, but high recognition performance can be

achieved when using an appropriate local image context

representation. Formally, we require that each test image

pixel is mapped to a pixel within the reference image

not more than w pixels from the place it would take in

a linear matching: xij 2 f1; . . . ; Xg \ fi0 � w; . . . ; i0 þ wg,
i0 ¼ i XI

� �
, yij 2 f1; . . . ; Y g \ fj0 � w; . . . ; j0 þ wg, j0 ¼ j YJ

� �
.

An informal description of the model is the following:
For each pixel in the test image, determine the best
matching pixel (possibly including its context) within a
region of size w� w defined around the corresponding
position in the reference image and use this match. The
formal constraints are given in Table 1. Due to its simplicity
and efficiency, this model has been described indepen-
dently in the literature several times with differing names,
see [47], the references therein, and the references in
Section 2. However, this model has not usually incorpo-
rated pixel contexts in the past, which is the key to
achieving low recognition error rates. The model is called
the image distortion model (IDM) here.

Since the dependencies between pixel displacements are
neglected, the minimization process for the IDM involves
only a local optimization for each pixel position in the test
image and, thus, is computationally inexpensive. In compar-
ison with the euclidean distance, the required computation
time is increased by a factor of approximately ð2wþ 1Þ2,
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where w denotes the warp range, i.e., the maximum
permitted absolute displacement of any one pixel.

In earlier experiments, we did not include local pixel
context for the matching in the IDM [21]. Without local pixel
content the IDM already provided improved results for
radiograph recognition, but was not able to improve the
results for handwritten digit recognition. The inclusion of
local context led to a noticeable improvement of the
performance in both applications and we could generalize
the improvements across different data sets [23], [24], [58].

The IDM is a very natural approach. Nevertheless, it is an
effective means of compensating for small local image
variations and the intuitiveness of the model may also be
seen as an advantage: It is almost as easily implemented as the
euclidean distance. An outline of the algorithm is given in
Algorithm 3.

Algorithm 3 IDM-distance; input: test image A,

reference image B;

for i ¼ 1 to I

for j ¼ 1 to J

i0 ¼ i XI
� �

, j0 ¼ j YJ
� �

s ¼ sþ min
x2f1;...;Xg\fi0�w;...;i0þwg
y2f1;...;Y g\fj0�w;...;j0þwg

kaij � bxyk2

output: s

Zero-order matching using the Hungarian algorithm.
The task of finding a matching between pixels in an
observed image and those in a reference image is common
to all deformation models discussed in this paper. The term
“matching” is a well-known expression in graph theory,
where it refers to a selection of edges in a (bipartite) graph.
Such a matching can be constructed using, for example, the
Hungarian Algorithm [29, p. 74ff], which has been used
before in the context of image recognition [2].

Using the Hungarian algorithm, it is possible to impose
the global constraint that each pixel of both compared
images must be matched at least once. This method is called
the Hungarian Distortion Model (HDM) [22] and it takes
into account larger parts of the reference images and, as a
result, more homogeneous displacement fields are ob-
tained. Nonetheless, as displacements of neighboring pixels
are not accounted for, the HDM is a zero-order model, as is
the IDM on which it is based.

The complexity of the Hungarian algorithm is cubic in
the number of vertices, which results in a problematic

runtime in the order of OðmaxððIJÞ3; ðXY Þ3ÞÞ. For example,
for the USPS task, this results in the duration of 42 ms per
image comparison on a 3 GHz PC.

7 RESULTS

In this section, we discuss the results obtained using the
previously described models on the databases described in
the following. We start with the results obtained by the two-
dimensional model, decrease complexity to the first and
zeroth order model, and, finally, present results for the
training of prototypes using the discussed models. A
summary is given in Table 3.

Databases. Fig. 4 shows example images and Table 2
shows an overview of the statistics for the databases used in
the experiments. A detailed description of each database is
presented in the Appendix.

USPS: The US Postal Service task is still one of the most
widely used reference data sets for handwritten char-
acter recognition and allows fast experiments due to its
small size. The test set contains a large amount of image
variability and is considered to be a “hard” recognition
task. Good error rates are in the range of 2-3 percent.

MNIST: The modified NIST database can be considered the
standard benchmark for handwritten character recogni-
tion at the moment. A large number of reference results are
available. The MNIST data set is larger in size than the
USPS data set and contains less variability in the test set.
Here, good error rates are in the range of 0.5-1.0 percent.

UCI & MCEDAR: Both the digit database from the University
of California, Irvine (UCI) Repository of Machine Learn-
ing Databases and the Modified CEDAR (Center of
Excellence for Document Analysis and Recognition)
database contain images of much lower resolution than
USPS and MNIST. For these data sets, only a few reference
results are available. They were included in the experi-
ments to show that the presented methods generalize well
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Fig. 4. Examples (a) USPS, (b) MNIST, (c) UCI, (d) MCEDAR, and

(e) IRMA/ImageCLEF.

TABLE 2
Corpus and Image Sizes

TABLE 3
Summary of Results for Handwritten Digit Recognition (ER [%])

Timing for one USPS distance computation on a 3 GHz PC.



and were not optimized to specific data sets. For the
experiments, we scale the images up to 16� 16 pixels
using spline interpolation. Good error rates here lie in the
range of 1-2 percent and 3.5-4.5 percent, respectively.

IRMA: The IRMA/ImageCLEF 2005 database contains
medical images from daily hospital routine (IRMA ¼
Image Retrieval in Medical Applications, CLEF ¼ Cross
Language Evaluation Forum). The database was used as a
part of the 2005 ImageCLEF workshop for the evaluation
of image retrieval systems in which 12 groups submitted
results that can serve as a basis of comparison. The task
here is to determine the correct category among 57 choices
and good error rates are in the range of 12-15 percent.

Classifier settings and baseline results. In all reported
experiments, the 3-NN classifier was used for the decision
making as it often performs better on the average than the
1-NN classifier. In all experiments (except when using
single prototypes), all of the training images in a data set
were used as references. For some experiments with very
time consuming distance calculations, the final distance was
only computed for the, e.g., 500 closest references based on
the euclidean distance. We compared the results of the
classifier using no distortion on the USPS data set and
observed that the error rate of 5.5 percent using gray values
increased to 6.4 percent using the 18-dimensional context
feature vector. This difference is due to the attenuation of
the influence of absolute gray value differences when using
derivatives, which has a negative effect on the classification
performance for this task when not allowing matching. This
highlights that it is the combination of local context and
distortion model that leads to good performance.

Recognition results using the 2DW. Due to its excep-
tionally high computational complexity, we performed only
a small number of experiments using the true two-
dimensional deformation model. All of these experiments
used the USPS data because it is comparatively small both
in the number of samples and in the size of the images. The
best result we obtained was an error rate of 2.7 percent. It is
possible that better results could be obtained using greater
search effort (i.e., larger beam sizes). But, observing the very
good error rates, at much lower computational complexity,
of the simple models described in the following sections, it
seems unlikely that results better than these will be
observed, even with much additional search effort.

Recognition results using the P2DHMM and the
P2DHMDM. Using the P2DHMDM, we were able to
improve the results for different recognition tasks, both
with respect to the P2DHMM and in general.

On the USPS task, the error rate of the P2DHMM is
2.5 percent, which can be reduced to 1.9 percent using the
additional flexibility of the P2DHMDM with local pixel
contexts [24]. On the USPS database, the P2DHMDM
performed better than the other models and gave the best
result published so far. On the UCI optical digits corpus, the
P2DHMM yielded an error rate of 1.1 percent, while the
P2DHMDM yielded 0.8 percent, the best published error rate.
After observing these results, we generally preferred the
P2DHMDM to the P2DHMM and, therefore, only present
results for the former. On the MCEDAR task, the P2DHMDM
again achieved the best published error rate of 3.3 percent. On
the MNIST data, the excellent error rate of 0.52 percent could
be achieved using the P2DHMDM.

Recognition results using the IDM. On the USPS task,
the IDM achieves a very good error rate of only 2.5 percent,
which is surprising for such a simple model. (Note that a
1-NN in this case performs slightly better at 2.4 percent
error rate [24].) For example, to achieve the same result, a
kernel density classifier using tangent distance has to
include two-sided tangent distance and nine-fold virtual
training and test data [21]. A warp range w ¼ 2 is used for
the IDM.

On the MNIST task, the use of the IDM resulted in an error
rate of 0.54 percent, which is not significantly higher than the
result of 0.52 percent using the P2DHMDM. This result also
compares very well to the results of other approaches on the
same data, although slightly better results are reported. The
statistically insignificant improvement of the P2DHMDM
probably does not justify the increased complexity of the
P2DHMDM over the IDM in this case.

On the UCI optical digits corpus, the IDM performed as
well as the more complex P2DHMDM, both achieved an error
rate of 0.8 percent, which is the best error rate known. On the
MCEDAR task the IDM achieves an error rate of 3.5 percent,
which is only slightly higher than the best published error rate
of 3.3 percent obtained by the P2DHMDM.

In the automatic annotation task of the 2005 ImageCLEF
evaluation of content-based medical image retrieval using
the IRMA data, the error rate of 12.6 percent obtained by
the IDM was the best among 42 results submitted. The
second best result uses the image distortion model along
with the normalized cross covariance of gray values and
Tamura texture features. In comparison, the baseline error
rate obtained by a 1-nearest neighbor classifier using
32� 32 images is 36.8 percent. The average error rate of
all submissions was 32.7 percent and the median was
22.3 percent. Also, in the medical retrieval task of the 2004
ImageCLEF evaluation, the IDM was used in the best
submission in the category “visual information only, no
user interaction.”

Recognition results using the HDM. Using the HDM on
the USPS database, an error rate of 2.2 percent could be
reached, which is an improvement over the 2.4 percent error
rate achieved using the IDM alone. However, this does not
justify the use of the greatly increased computational effort.

Recognition results using trained prototypes. We per-
formed some experiments for training of prototypes with the
presented matching models on the USPS corpus to investi-
gate the performance of the models with fewer prototypes.
Using the training data, a reference model for each of the
10 classes was estimated as described in the following. This
model was then used as a single reference for that class for
testing.

The prototypes are initialized using the mean images of
each class (see Fig. 5, upper row). Then, each training image is
matched to the prototype. Averaging the pixel values that the
prototype pixels are matched to, a new set of prototypes is
obtained that better represents the training data and takes
into account the variability of the training images. This
procedure is iterated until the prototype images do not
change any more. Fig. 5 shows the mean images for all
10 classes and the prototypes learned using the P2DHMDM.

Fig. 5 also contains error rates obtained using prototypes
trained using the P2DHMDM. These show that the
P2DHMDM performs significantly better using the learned
prototypes. Interestingly, using only one prototype per
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class, the error rate is as low as 4.9 percent. The learned
prototypes appear much less blurred than the mean images
as the image variability is compensated for by the nonlinear
deformation model. On the other hand, the corresponding
mean images perform better if no deformation is used in the
classifier, as could be expected because they represent the
maximum likelihood estimate for that case.

Other results that these error rates can be compared to (i.e.,
that also use a single prototype per class) are briefly described
in the following: Using the empirical means and an estimated,
14-dimensional tangent vector subspace, as in [25], the error
rate obtained was 5.0 percent. Hastie and Simard [18] report
an error rate of 4.1 percent using a 12-dimensional trained
subspace approach that also changes the means. We can thus
conclude that the use of the described models of image
variability also gives state-of-the-art results for the use of
single prototypes per class.

8 CONCLUSION

We discussed several nonlinear models of image variability
that can be used as distance measures in appearance-based
classifiers. From experiments on several real-world image
recognition tasks, as summarized in Table 3, we can conclude
the following: The simplest model—the image distortion
model—used with pixel level features that describe the local
image context represents the best compromise between
computational complexity and recognition accuracy, while
the more complex P2DHMDM leads to slightly better results
on average and outperforms the conventional P2DHMM. The
most complex model, the 2DW, performed worse or could not
be evaluated due to the high-computational demand.

We can draw the following conclusion from the analysis
of the experiments:

. The approach used of distortion modeling is appro-
priate for the classification tasks discussed, because it
corresponds well to the deformations encountered in
the images, including small affine transformations
and local distortions. This can be seen not only by
observing the low error rates, but also by regarding the
very clear resulting prototypes as shown in Fig. 5.

. While the 2DW second-order model is conceptually
very appealing because it takes into account the full
2D-constraints, the minimization under its constraints

is computationally very expensive, and approxima-
tions are necessary. This, in turn, leads to higher error
rates in the experiments at still large runtimes.

. The first-order P2DHMM suffers somewhat from the
very strict assignment of image columns to image
columns which limits the range of transformations
that can be modeled.

. These restrictions are alleviated for the zero-order
IDM, which means, on the other hand, that more
unwanted transformations can be modeled. By using
the pixel context information, the unwanted trans-
formations are made much more costly such that this
efficient model achieves very good error rates.

. The best compromise between restricting the wanted
transformations and allowing unwanted transforma-
tions seems to be the P2DHMDM with the use of
local contexts. It combines positive effects of
P2DHMM and IDM and leads to the overall best
recognition performance at still acceptable runtimes.

With the discussed methods, we achieved very compe-

titive results across four different handwritten digit

recognition tasks, in particular an error rate of 0.52 percent

on the MNIST task. We also showed that the same methods

can be effectively used for the categorization of medical

images. Although not discussed in this paper, we would

like to mention that improvements in the domain of image

sequence recognition (sign language word recognition,

gesture recognition) can also be achieved by modeling the

image variability with these deformation models [58].
We were able to show that the IDM with local gradient

contexts leads to excellent results for the recognition of
handwritten digits and medical images. On all data sets
considered, state-of-the-art results were obtained using the
efficient IDM, which can be described in a few statements
and implemented in a few lines of code. To emphasize this
point, we present the algorithm here, including the context
extraction. Algorithm 4 was used for image matching for
digit recognition and achieved an error rate of 0.54 percent
on the MNIST data set.1

Algorithm 4 IDM-distance (3� 3-context); input:

test image A, reference image B;

Av ¼ vertical Sobel ðAÞ, Ah ¼ horizontal Sobel ðAÞ
Bv ¼ vertical Sobel ðBÞ, Bh ¼ horizontal Sobel ðBÞ
for i ¼ 1 to I

for j ¼ 1 to J

i0 ¼ i XI
� �

, j0 ¼ j YJ
� �

s ¼ sþ min
x2f1;...;Xg\fi0�w;...;i0þwg
y2f1;...;Y g\fj0�w;...;j0þwg

P1
m¼�1

P1
n¼�1

ðAv
iþn;jþm�Bv

xþn;yþmÞ
2

þðAh
iþn;jþm�Bh

xþn;yþmÞ
2

output: s

This distance algorithm used within a 3-NN classifier
combines several properties that make it an ideal baseline
algorithm for image recognition tasks in the presence of
image variability:
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1. The software used is available at http://www-i6.informatik.rwth-
aachen.de/~gollan/w2d.html.

Fig. 5. Prototypes for the USPS training set using no matching (upper

row) and using image matching (lower row) and the respective error

rates for the USPS data.



. it yields very good results across different tasks,

. it is easy to implement,

. it is computationally efficient, and

. it has only a few free parameters.

APPENDIX

In the appendix, we describe each of the data sets used in

more detail along with available reference results.

A.1 The US Postal Service Task

The well-known United States Postal Service Handwritten
Digit Database (USPS) consists of isolated and normalized
images of handwritten digits taken from US mail envelopes
scaled to 16� 16 pixels. The database contains a separate
training and test set, with 7,291 and 2,007 images, respec-
tively. Different versions of this database exist. The experi-
ments performed here are based on the data as available via
FTP from the Max Planck Institute Tübingen.2 A slightly
different version of the USPS data exists, sometimes called
USPS+ [10]. Here, 2,549 additional images of machine printed
digits were added to the training set [31].

One disadvantage of the USPS corpus is that no
development test set exists, resulting in the possible
underestimation of error rates for all of the reported results.
Note that this disadvantage holds for almost all data sets
available for image object recognition.

One advantage of the USPS task is the availability of
many recognition results reported by international research
groups, allowing a meaningful comparison. Results for

different algorithms are listed in Table 4. The USPS data set
continues to be used in a number of recent publications.

A.2 The MNIST Task

The modified NIST (National Institute of Standards and
Technology) handwritten digit database (MNIST, [32]) is
very similar to the USPS database in its structure. The main
differences are that the images are not normalized and that
the corpus is much larger. It contains 60,000 images in the
training set and 10,000 patterns in the test set of size
28� 28 pixels. The data set is available online.3 This data set
is generally considered to be an easier recognition task than
the USPS data for two reasons. First, the human error rate is
estimated to be only 0.2 percent, although it has not been
determined for the whole test set [46]. Second, the (almost
10 times) larger training set allows machine learning
algorithms to generalize better. Table 5 gives an overview
of the error rates reported in other publications for the
MNIST data.

Note that the methods used in this paper were not
optimized for the MNIST task. The same parameters that
proved to work well on the USPS data were chosen without
further tuning.

A.3 The UCI Task

The data of the UCI task was obtained from the University
of California, Irvine (UCI) Repository of Machine Learning
Databases4 [39]. The data set contains handwritten digits
of size 8� 8 pixels with 17 gray levels. It is separated into
a training set of 3,823 images and a test set comprising
1,797 images. Its construction is described in more detail
in [1].
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Overview of Published Error Rates for the USPS Task [%]

Error rates using the USPS+ training set are indicated by �.

TABLE 5
Error Rates for the MNIST Task [%]

2. ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data.
3. http://www.research.att.com/~yann/ocr/mnist/.
4. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/~optdigits.



Fig. 2 shows some example images from the UCI task

and Table 6 shows a summary of the available results.

A.4 The MCEDAR Task

The modified CEDAR (MCEDAR) data set is based on the

data published by the Center of Excellence for Document

Analysis and Recognition at the State University of New

York at Buffalo (CEDAR). The data set contains images of

handwritten digits with a resolution of 8� 8 pixels. There

are 11,000 training images and 2,711 images in the test set.

We call the data modified CEDAR data because the data is

based on the subsets chosen in [19] and also the preprocessing

performed by the authors. We used exactly the same data as

Hinton et al. which was also used by Tipping and Bishop

(whom we would like to thank for providing the modified

data) in [51]. Table 7 gives an overview of the error rates

obtained on these data using various methods.

A.5 The ImageCLEF 2005/IRMA Task

The IRMA database contains medical image data from the
IRMA project (Image Retrieval in Medical Applications5) of
the RWTH Aachen University [33]. The database contains
10,000 images that are labeled with a detailed code that
specifies body region, image modality, biosystem imaged,
and imaging orientation. The data was used as a part of the
2005 ImageCLEF workshop for the evaluation of image
retrieval systems.6 The data set is partitioned into 9,000 train-
ing images and 1,000 test images. For the ImageCLEF 2005
task, the data set was subdivided into 57 classes. Although the
original images are much larger for the experiments the
images were scaled to a common height of 32 pixels to make
the computations faster and to allow for an unchanged filter
setup. At this scale, fine textures and noise are strongly
reduced in the images which allows to use pixel-based
gradients.

In Table 8, an overview of the results of the 2005
ImageCLEF “Automatic Annotation Task” is given. For each
group, only the best and the worst result among the
submissions is included. The complete table is available
online.7 In total, 26 groups registered for participation in the
automatic annotation task. From these 26 groups, 12 groups
submitted 41 runs, each group had at least two different
submissions, the maximum numberof submissionsper group
was 7. A more detailed analysis and a short description of the
methods that were used by the groups can be found in [8].
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